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Abstract
It is shown here and in the preceding paper (Bartlett S D, Rowe D J and
Repka J 2002 J. Phys. A: Math. Gen. 35) that vector coherent state theory,
the theory of induced representations and geometric quantization provide
alternative but equivalent quantizations of an algebraic model. The
relationships are useful because some constructions are simpler and more
natural from one perspective than another. More importantly, each approach
suggests ways of generalizing its counterparts. In this paper, we focus on the
construction of quantum models for algebraic systems with intrinsic degrees
of freedom. Semi-classical partial quantizations, for which only the intrinsic
degrees of freedom are quantized, arise naturally out of this construction. The
quantization of the SU(3) and rigid rotor models are considered as examples.

PACS numbers: 03.65.Fd, 02.20.−a, 04.60.Ds

1. Introduction

Quantizing a classical model is a difficult problem in general. The theory of geometric
quantization (GQ) [2] provides a general and powerful framework for the quantization of
a wide variety of classical systems, but due to its formidable mathematical language it is
inaccessible to most physicists. We show here and in the preceding paper [1] that the useful
and physically-motivated theory of coherent state representations [3, 4] provides a natural
language for describing the techniques of GQ. In [1], it was shown that scalar coherent state
theory yields three categories of representations for the spectrum generating algebra (SGA) of
an algebraic model: classical realizations, prequantization and the irreducible representations
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of quantization. This paper generalizes the results of [1] to vector-valued coherent state
representations.

While it is often possible to induce representations of a Lie algebra from a one-dimensional
irrep of some subalgebra (as in the standard coherent state construction), it is generally
more economical and effective to induce from a known multi-dimensional irrep of a larger
subalgebra. The amount of work is then minimized by capitalizing on information that is
already available, and leads to a useful physical interpretation of some degrees of freedom
of a model system as intrinsic. For example, using the method of induced representations,
Wigner [5] found irreps of the Poincaré group corresponding to quantizations of particles with
intrinsic spin. Such intrinsic degrees of freedom are often regarded as having quantal origins.
It will be seen that they have classical counterparts and that the general theory of induced
representations, when developed within the framework of vector coherent state (VCS) theory
[6, 7], has a natural expression in the language of geometric quantization.

2. Classical representations with intrinsic degrees of freedom

Let T be an abstract (possibly projective) unitary representation of a dynamical group G on
a Hilbert space H. As in the scalar theory, T need not be specified precisely; it could be, for
example, a regular representation, or a Weil representation on a many-particle Hilbert space.
Corresponding to any normalized state |0〉 ∈ H there is a coadjoint orbit

Oρ = {ρg; g ∈ G} (1)

of densities defined by

ρg(A) = 〈0|Â(g)|0〉 (2)

where Â = T (A) and Â(g) = T (g)ÂT (g−1). Let Hρ ⊂ G be the isotropy subgroup of Oρ

atρ; the orbit Oρ � Hρ\G is known to be symplectic and can be regarded as a classical phase
space. Moreover, a classical representation A of an element A ∈ g, the Lie algebra of G, is
given as a function on Oρ by A(g) = ρg(A) (for details, see [1]).

Let H ⊇ Hρ be some other subgroup. It may be convenient to choose H such that H\G
is also symplectic, but this condition is not necessary. The phase space Oρ � Hρ\Gmay then
be viewed as a Hρ\G → H\G fibre bundle with typical fibre Hρ\H . When H is set equal
to Hρ , as in scalar coherent state theory, the fibres become trivial. A specification of H that
contains Hρ as a proper subgroup, in vector coherent state theory, corresponds to regarding
some degrees of freedom of G as intrinsic, i.e. as gauge degrees of freedom. We refer to H as
the intrinsic symmetry group.

Viewing the classical phase space as a smaller space with intrinsic degrees of freedom
in this way does not change a classical representation in principle. However, it gives a new
perspective and leads to new quantization procedures. Starting with a density ρ ∈ g∗, the
classical phase space Oρ is generated in two steps. The first step generates the coadjoint
orbit Hρ\H of the subgroup H ⊂ G as the set of densities {ρα; α ∈ H }. This set is then
regarded as the fibre of a bundle over the point H of the space H\G. The second step defines
the fibre over an arbitrary point Hg of H\G as the set {ραg; α ∈ H }. The classical function
A on G representing an element A ∈ g, defined as having values A(g) = ρ(A(g)), with
A(g) = Adg(A) (=gAg−1 for a matrix group) is then seen as being H-equivariant, i.e. it
satisfies the equation

A(αg) = ρα(A(g)) ∀α ∈ H. (3)

When H = Hρ , the fibres are trivial and this equivariance condition reduces to the invariance
condition A(αg) = A(g) for α ∈ H .
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As an example, consider a particle moving in a three-dimensional Euclidean space. If
the particle has intrinsic spin, it is appropriate to take as SGA the semidirect sum of hw(3),
a Heisenberg–Weyl algebra, and su(2) with basis {q̂i , p̂i, Î , Ĵ i; i = 1, 2, 3} and commutation
relations

[q̂i , p̂j ] = ih̄δij Î [Ĵ i , q̂j ] = ih̄
∑
k

εijkq̂k

(4)
[Ĵ i , Ĵ j ] = i

∑
k

εijkĴ k [Ĵ i , p̂j ] = ih̄
∑
k

εijkp̂k.

We suppose these Lie algebra elements act via a representation T as Hermitian operators on
some Hilbert space H. Let |0〉 ∈ H be a state with expectation values

〈0|Î |0〉 = 1 〈0|Ĵ 3|0〉 = M
(5)〈0|q̂i|0〉 = 〈0|p̂i |0〉 = 〈0|Ĵ 1|0〉 = 〈0|Ĵ 2|0〉 = 0.

An [HW(3)]SU(2) group element can be parameterized

T (g(v, q, p)) = T (v) exp

(
− i

h̄

∑
i

pi q̂i

)
exp

(
i

h̄

∑
i

qip̂i

)
(6)

with v a U(2) group element. For M 
= 0, the isotropy subgroup Hρ of the density defined
by ρ(Â) = 〈0|Â|0〉 is the group Hρ � U(1) × U(1) with infinitesimal generators {Î , Ĵ 3}.
Thus, with ρ(Â) = 〈0|Â|0〉 and g = g(v, q, p), the classical representation of the observables
{q̂i , p̂i , Î , Ĵ i} is given by the functions {Qi ,Pi , I,Ji} with

Qi(g) = ρ(q̂i(g)) = qi

Pi (g) = ρ(p̂i(g)) = pi (7)

Ji(g) = ρ(Ĵ i(g)) = Si (v) + (qjpk − qkpj )

where Si , a function over SU(2), represents the intrinsic spin of the particle. The functions of
this classical representation can be regarded as functions overHρ\[HW(3)]SU(2). However,
they are more usefully represented as functions over the classical (p–q) phase space,
U(2)\[HW(3)]SU(2) � U(1)\HW(3), with intrinsic spin degrees of freedom defined by a
choice of intrinsic symmetry groupH = U(2).

In the following sections, we show that VCS theory produces three categories of
quantization of an algebraic model with intrinsic degrees of freedom: (i) semi-classical
partial quantizations for which only the intrinsic degrees of freedom are quantized; (ii) unitary
reducible representations that have the form of a prequantization; and (iii) unitary irreps of
a full quantization, equivalent to those obtained by GQ but with an additional fibre structure
encompassing the intrinsic degrees of freedom. Each category of representation is a natural
extension of the scalar theory.

3. Semi-classical partial quantizations

A partial quantization is a representation in which only the intrinsic degrees of freedom are
quantized and the extrinsic degrees of freedom are represented classically.

To be specific, suppose that M is an irreducible unitary representation of an intrinsic
symmetry group H on a finite-dimensional (intrinsic) Hilbert space U. Then a partial
quantization is obtained by replacing the classical phase space, seen as a Hρ\G → H\G
bundle with typical fibreHρ\H , by a semi-classical state space B with the geometric structure
of a fibre bundle associated with the principal G → H\G bundle by the representation M
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of H. A semi-classical state of the system, corresponding to a point in B, is then a state vector
in the intrinsic Hilbert space over a point in the classical H\G phase space.

Semi-classical representations result when the scalar coherent state construction of a
classical representation is generalized to a VCS construction. As a prelude to defining H
and M, we start with a finite-dimensional subspace U ⊂ H of the Hilbert space for an abstract
unitary representation T of the dynamical group G. Denote by E the natural embedding
E : U → H. There is then a system {U(g); g ∈ G} of coherent state subspaces in H

defined by

U(g) = {|ψ(g)〉 = T (g−1)|ψ〉; |ψ〉 ∈ E(U)}. (8)

Let � denote the projection of H to U relative to the inner product on H. Then the subspace
U ⊂ H defines a map ρ̂ : g → GL(U) from the Lie algebra g to the linear transformations
of U by

ρ̂(A) = �ÂE ∀A ∈ g. (9)

In the special case that U is one-dimensional and spanned by a state of unit norm |0〉, ρ̂
reduces to a scalar density and acts on an arbitrary vector |ψ〉 ∈ U by scalar multiplication,
i.e. ρ̂(A)|ψ〉 = |ψ〉〈0|Â|0〉. Thus, the above definition of ρ̂ generalizes the concept of a
density ρ : g → R to a map ρ̂ : g → GL(U); we therefore refer to ρ̂ as a semi-classical
density. The set of such semi-classical densities

Oρ̂ = {ρ̂g; g ∈ G} (10)

defined by

ρ̂g(A) = ρ̂(A(g)) (11)

is then a natural generalization of a coadjoint orbit.
The orbit Oρ̂ has the structure of a fibre bundle over H\G, where H is a subgroup of G

with Lie algebra

h = {A ∈ g|ρ̂([A,X]) = [ρ̂(A), ρ̂(X)],∀X ∈ g}. (12)

With this definition, h is a subalgebra of g for which the restriction of ρ̂ to h ⊂ g is a
representation. Let M be an extension of this representation to the group H such that

i
d

dt
M(e−iAt )

∣∣∣
t=0

= M(A) ≡ ρ̂(A) ∀A ∈ h (13)

and

ρ̂(X(hg)) = M(h)ρ̂(X(g))M(h−1) ∀h ∈ H X ∈ g. (14)

The elements of Oρ̂ then satisfy the H-equivariance condition

ρ̂hg = M(h)ρ̂gM(h
−1) ∀h ∈ H (15)

and Oρ̂ is interpreted as a fibre bundle over H\G associated with the principal G → H\G
bundle by the action (15). The H-equivariance condition is a generalization of the H-invariance
condition for the scalar densities of a standard coadjoint orbit Oρ ∼ Hρ\G;

ρhg = χ(h)ρgχ(h
−1) = ρg ∀h ∈ Hρ. (16)

It is interesting to note that the representation M of h and H, defined by

M : A → ρ̂(A) ∀A ∈ h (17)

is generally not a subrepresentation of the restriction of the representation T to h ⊂ g. The
parallel of this observation was obvious for the Abelian scalar representation

χ : A → 〈0|T (A)|0〉 A ∈ hρ (18)
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but it is less obvious that multidimensional representations that are not subrepresentations
exist. However, they are known for some Lie algebras and are described as embedded
representations [8].

Note also that the representation M could be reducible. However, although it is not
essential, we shall assume in the following that the subspace U ⊂ H is chosen in such a way
that it is irreducible.

The semi-classical density now defines a semi-classical representation of g in which an
element A ∈ g is mapped to an operator-valued function Â over G having values

Â(g) = ρ̂g(A) = ρ̂(A(g)) (19)

in GL(U), which satisfies the equivariance relationship

Â(hg) = M(h)Â(g)M(h−1) ∀h ∈ H. (20)

The Poisson bracket for this representation is defined by

{Â, B̂}(g) = − i

h̄
ρ̂([A(g), B(g)]). (21)

Let {Ai} be a basis for h and {Aν} a complementary set that completes a basis for g. From
the expansion

A(g) =
∑
i

Ai(g)Ai +
∑
ν

Aν(g)Aν (22)

it follows that

Â(g) =
∑
i

Ai(g)M(Ai) +
∑
ν

Aν(g)ρ̂(Aν) (23)

and that

{Â, B̂}(g) = − i

h̄
[Â(g), B̂(g)] +

∑
µν

Aµ(g)	̂µνB
ν(g) (24)

where

	̂µν = − i

h̄
(ρ̂([Aµ,Aν])− [ρ̂(Aµ), ρ̂(Aν)]). (25)

Following standard terminology, it is convenient to characterize the decomposition of
a Lie algebra element into a vertical component (an element of h) and a complementary
(horizontal) component, as a choice of gauge. Thus, a gauge is defined by a projection
g → h;A(g) → ∑

i A
i(g)Ai . It is then notable that the second term of equation (24) is

gauge independent. This independence follows from the definition of h, equation (12), which
implies that ∑

µν

Aµ(g)	̂µνB
ν(g) = − i

h̄
(ρ̂([A(g), B(g)])− [ρ̂(A(g)), ρ̂(B(g))]) . (26)

Consequently, as shown in the appendix, the semi-classical Poisson bracket of equation (24)
has a manifestly covariant expression

ih̄{Â, B̂}(g) = [Â(g), B̂(g)] + ih̄	̂(XÂ(g),XB̂(g)) (27)

where XÂ is a Hamiltonian vector field generated by Â and 	̂ is a curvature tensor for the
semi-classical phase space (both of which are defined in the appendix).

While for formal purposes it is convenient to express a classical representation by functions
over the group G, it is generally more useful, in practical applications, to represent them
as functions over a suitable set of H\G coset representatives. Recall that a set of coset
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representatives K = {k(g) ∈ Hg; g ∈ G} defines a factorization g = h(g)k(g), with
h(g) ∈ H , of every g ∈ G. Hence, it follows from the identity

Â(h(g)k(g)) = M(h(g))Â(k(g))M(h−1(g)) (28)

that, given the representation M, the restriction of Â to the subset K ⊂ G is sufficient to
uniquely define Â. Moreover, the Poisson bracket of two such functions is given directly in
terms of this restriction by

{Â, B̂}(k) = − i

h̄
ρ̂([A(k), B(k)]) ∀k ∈ K. (29)

Often it is convenient to consider factorizations of the type g = h(g)k(g) with h(g) ∈ Hc

and k(g) ∈ K , where K is a subset of Hc\Gc coset representatives and Hc and Gc are the
complex extensions of H and G, respectively. The semi-classical representation is then by
operator-valued functions on K.

As an illustration of partial quantization, suppose the intrinsic spin observables of a
particle in a three-dimensional Euclidean space, cf section 2, are described quantally by a
finite-dimensional irrep M of the u(2) intrinsic symmetry algebra. Let {ξsm;m = −s, . . . , s}
be an orthonormal basis for the Hilbert space U of this irrep. Let E : U → H; ξsm → |sm〉
be an embedding of U as an su(2)-invariant subspace of H such that

〈sm|q̂i|sn〉 = 〈sm|p̂i|sn〉 = 0 〈sm|Î |sn〉 = δmn (30)

and define

ρ̂(A) =
∑
mn

ξsm〈sm|Â|sn〉ξ †sn ∀A ∈ g (31)

with the understanding that ξ †sn · ξsm = δmn. The semi-classical representation of the
[hw(3)]su(2) algebra can be defined on the coset space U(2)\[HW(3)]SU(2) (i.e. the p–q
plane) as

Q̂i(p, q) = ρ̂(q̂i(g)) = qi Î
P̂i (p, q) = ρ̂(p̂i(g)) = pi Î (32)

Ĵi(p, q) = ρ̂(Ĵ i (g)) = Ŝi + L̂i (p, q)
where

Ŝi = ρ̂(Ĵ i ) L̂i (p, q) = (qjpk − qkpj )Î (33)

are the spin and orbital angular momenta, respectively, and Î = ρ̂(Î ) is the identity operator
on U. The quantal part of the Lie bracket for these semi-classical observables is now given by

[Q̂i(p, q), P̂i (p, q)] = [Ĵi(p, q), Q̂i (p, q)] = [Ĵi(p, q), P̂i (p, q)] = 0
(34)

[Ĵi(p, q), Ĵj (p, q)] = ih̄Ŝk
and the classical part by

ih̄	̂
(
XQ̂i

, XP̂i
)
(p, q) = ih̄Î ih̄	̂

(
XĴi , XQ̂j

)
(p, q) = ih̄Q̂k(p, q)

(35)
ih̄	̂

(
XĴi , XP̂j

)
(p, q) = ih̄P̂k(p, q) ih̄	̂

(
XĴi , XĴj

)
(p, q) = ih̄L̂k(p, q).

Together, these parts lead to a semi-classical representation of [hw(3)]su(2) with Poisson
bracket given by equation (27).

Such semi-classical representations not only provide a useful and insightful first step in
the quantization of a complex system, they are also of considerable physical interest in their
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own right. For example, in many situations involving macroscopic degrees of freedom, a
classical description of the dynamics is more than adequate. However, macroscopic systems
can also have microscopic intrinsic structures for which quantum mechanics is essential.
For example, it may be appropriate to quantize the intrinsic dynamics of a heavy molecule
but to describe its centre-of-mass motions classically. The scattering of a heavy ion by a
nucleus might be another example. The existence of corresponding partial quantizations
of their spectrum generating algebras is therefore a potentially powerful tool in their
analysis.

4. VCS induced representations as prequantization

A VCS representation can be constructed in the form of a prequantization. It will be convenient
to say that an irrep M of H ⊂ G is contained in a (possibly projective) representation T of G
if M appears in either a direct sum or direct integral decomposition of TH , where TH is the
restriction of T toH ⊂ G. We then say that a semi-classical representation of g, defined by an
irrep M of a compact intrinsic symmetry groupH ⊂ G, is quantizable if M is contained in some
unitary representation T of the group G on a Hilbert space H. It follows, by Schur’s lemma,
that if M is quantizable there exists a non-vanishing H-intertwining operator � : HD → U,

from a dense subspace of H to U, the carrier space of M, such that

�T (h) = M(h)� ∀h ∈ H. (36)

Given an abstract unitary representation T of G and such an H-intertwining operator, a
VCS wavefunction� is defined over G [7] for every |�〉 ∈ HD by

�(g) = �T (g)|�〉 ∀g ∈ G. (37)

It follows from the definition of � that

�(hg) = M(h)�(g) ∀h ∈ H. (38)

A VCS representation � of the group G induced from the representation M of the subgroup
H ⊂ G, is then defined by

[�(g′)�](g) = �(gg′) g′ ∈ G. (39)

Equations (38) and (39), of which the scalar coherent state representations are special cases,
are the basic equations of all inducing constructions.

For example, suppose M is a representation of H on a Hilbert space U with orthonormal
basis {ξm} andE : U → H; ξm → |m〉 is an embedding of U as an H-invariant subspaceE(U)
in H. Then a suitable intertwining operator is defined by

� =
∑
m

ξm〈m| (40)

and vector coherent state wavefunctions are expressed as

�(g) =
∑
m

ξm〈m|T (g)|�〉. (41)

In principle, the Hilbert space of VCS wavefunctions is determined by the map (37) from
HD to VCS wavefunctions; the inner product can be inferred as in section 3.4 of the preceding
paper [1]. Many VCS Hilbert spaces are possible depending on the choice of T and the
embedding E. For example, as discussed briefly in section 6, if T is the regular representation
of the group G and E has no special properties, then � is the representation of G induced from
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the representation M of a subgroupH ⊂ G in the standard theory of induced representations.
This representation is known to be reducible in general and, as we now show, it is a natural
generalization of a prequantization. However, the embedding E can also be chosen such that
the VCS representation is a subrepresentation of the standard induced representation. It is
shown in the following section that it can even be chosen such that the VCS representation is
irreducible.

Following the construction of the scalar coherent state representations, the general
inducing construction defines a representation of the Lie algebra g by

[�(A)�](g) = �T (g)T (A)|�〉 = �(A(g)g) A ∈ g (42)

where �(Ag) is defined generally, for any A ∈ g, by

�(Ag) = i
d

dt
�(e−itAg)

∣∣∣
t=0
. (43)

For a given choice of gauge, defined by a basis {Ai} for h and a complementary set {Aν}
to complete a basis for g, the expansion of A(g) given by equation (22) leads to the explicit
expression

[�(A)�](g) =
∑
i

Ai(g)M(Ai)�(g) + ih̄
∑
ν

Aν(g)[∂ν�](g) (44)

where

[∂ν�](g) = ∂

∂xν
�

(
exp

(
− i

h̄

∑
µ

xµAµ

)
g

) ∣∣∣∣∣
x=0

. (45)

Note that this generalization of a scalar coherent state representation is achieved simply
by replacing the one-dimensional representation χ of the intrinsic symmetry group by the
multidimensional representation M.

Like its scalar counterpart, the representation � can be expressed in the covariant form of
a prequantization. From equation (23), we have∑

i

Ai(g)M(Ai) = Â(g)−
∑
ν

Aν(g)ρ̂(Aν). (46)

Equation (44) then becomes

[�(A)�](g) = Â(g)�(g) + ih̄
∑
ν

Aν(g)[∇ν�](g) (47)

where

∇ν = ∂ν +
i

h̄
ρ̂(Aν). (48)

The first term, Â(g)�(g), of equation (47) is manifestly covariant. Moreover, from definition
(42), the second term is identical to

ih̄[∇A�](g) = �(A(g)g)− ρ̂(A(g))�(g) (49)

where

[∇A�](g) =
∑
ν

Aν(g)[∇ν�](g). (50)

Thus, it too is covariant.
It is shown in the appendix that ∇A is identical to the covariant derivative ∇XÂ in the

direction of the vector field XÂ and is expressed in a particular gauge as a sum

∇A = ∇XÂ = XÂ +
i

h̄
θ̂ (XÂ) (51)
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where XÂ is a Hamiltonian vector field generated by Â and θ̂ is a one-form. It is also shown
that the curvature 	̂ of the semi-classical phase space is the covariant exterior derivative of θ̂
given by

	̂(XÂ,XB̂) = dθ̂ (XÂ,XB̂)− [θ̂ (XÂ), θ̂ (XB̂)]. (52)

Thus, the VCS representation �(A) of an element A ∈ g is expressed as

�(A) = Â + ih̄∇XÂ (53)

and is seen as a natural generalization of prequantization to include intrinsic degrees of
freedom.

As for semi-classical observables, it is generally more useful to express VCS
wavefunctions as functions over a suitable set of H\G coset representatives. Thus, with
a set of coset representativesK = {k(g) ∈ Hg; g ∈ G}, it follows from the identity

�(g) = �(h(g)k(g)) = M(h(g))�(k(g)) (54)

that, given M, the restriction of � to the subset K ⊂ G is sufficient to uniquely define � .
VCS wavefunctions can also be defined over a subset of Hc\Gc coset representatives Kc by
a factorization g = h(g)k(g), with h(g) ∈ Hc, k(g) ∈ Kc, of every g ∈ G.

For the example of a particle with intrinsic spin considered in the previous sections, we
can take

� =
∑
m

ξsm〈sm| (55)

with the previous notations. Then, with

�(p, q) = � exp

(
− i

h̄

∑
i

pi q̂i

)
exp

(
i

h̄

∑
i

qip̂i

)
|�〉 (56)

we obtain the prequantization

�(p̂i) = −ih̄
∂

∂qi
�(q̂i) = qi + ih̄

∂

∂pi
(57)

�(Ĵ i) = Ŝi − ih̄

(
pj

∂

∂pk
− pk

∂

∂pj

)
− ih̄

(
qj

∂

∂qk
− qk

∂

∂qj

)
which acts on vector-valued functions on ( p–q) space.

5. Irreducible representations and quantization

A VCS representation will be irreducible if the intertwining operator � is such that the only
nonzero VCS wavefunctions are those of an irrep. Such irreps are found in VCS theory by a
natural generalization of the scalar coherent state construction.

It is known that a representation of an SGA g extends linearly to the complex extension
gc of g. The corresponding extension of a generic unitary representation T of the real group G
may not converge for all of Gc. However, it may be sufficient for the purpose of defining an
irreducible coherent state representation if the extension of T is well-defined on H for some
subsetU(P) ⊂ P of a subgroupP ⊂ Gc which contains H. Let M̃ denote an irrep of P ⊂ Gc

which restricts to a unitary irrep M of H ⊂ P . Now suppose an intertwining operator can be
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found such that

ψ(zg) = �T (z)T (g)|ψ〉 = M̃(z)ψ(g) ∀z ∈ U(P). (58)

We then say that the irrep � is induced from the representation M̃ of P. It will be shown
by examples in the following sections that, for many categories of groups, there are natural
choices of P and its representation M̃ for which the corresponding VCS representation is
irreducible.

Subgroups which lead to irreducible induced representations are familiar in representation
theory. For example, if G were semisimple and the intrinsic symmetry group H were a Levi
subgroup, a suitable subgroup P ⊂ Gc would be the parabolic subgroup generated by H and
the exponentials of a set of raising (or lowering) operators.

Apart from imposing the stronger condition (58), the coherent state construction is the
same as in section 4. However, the stronger condition restricts the set of coherent state
wavefunctions to a subset with the result that the coherent state representation becomes an
irreducible subrepresentation of that given in section 4.

Now if a unitary coherent state representation � of a dynamical group G induced from
a representation M̃ of a subgroup P ⊂ Gc defines an irreducible representation of the Lie
algebra g and if the representation M̃ satisfies the equality

i
d

dt
M̃(e−iAt )

∣∣∣
t=0

= M̃(A) ≡ ρ̂(A) A ∈ p (59)

then we say that � is a quantization of the classical representation of g defined by ρ̂.
Note, however, that for this quantization condition to be satisfied, the classical

representation corresponding to the density ρ̂ must define a representation M̃ of a subalgebra
p ⊂ gc that is contained in a unique irrep of gc which restricts to a unitary irrep of g. This
irrep of g must integrate to a (possibly projective) irrep of G.

The above VCS quantization of a classical model is a practical expression of induced
representation theory in the language of geometric quantization. Evidently the subgroup
P ⊂ Gc used to construct an irreducible VCS induced representation defines an invariant
polarization of the tangent space at each point of the base manifoldH\G of the semi-classical
bundle provided its Lie algebra p satisfies the conditions:

(i) ρ̂([A,B]) = [ρ̂(A), ρ̂(B)] for any A,B ∈ p,

(ii) dimR g + dimR h = 2 dimC p,

(iii) p is invariant under the adjoint action of H.

The first condition ensures that the polarization is isotropic in the sense that 	̂(A,B) = 0 for
all A,B ∈ p. The second condition ensures that p is a maximal subalgebra for which the first
condition holds. The final condition ensures that the polarization is well-defined on H\G. In
all the examples we consider, these conditions are satisfied by the Lie algebra p ⊂ gc used in
the VCS construction.

For the example of a particle with intrinsic spin considered in the previous sections, we
can take as a polarization the subalgebra p of gc spanned by the elements {Î , Ĵ i , q̂i}. Let M̃
denote the representation of p which restricts to the previous representation M of u(2) and to
the zero representation of the Abelian algebra spanned by {q̂i}; i.e., M̃(q̂i) = 0. Then, with
� = ∑

m ξsm〈sm| defined such that∑
m

ξsm〈sm|Ĵ i|�〉 = Ŝi
∑
m

ξsm〈sm|�〉
(60)∑

m

ξsm〈sm|q̂i|�〉 = 0



VCS representations, induced representations and geometric quantization II 5635

so that 〈sm| is a functional on a dense subspace of H, we obtain pi-independent VCS
wavefunctions and the irreducible representation

�(p̂i) = −ih̄
∂

∂qi
�(q̂i) = qi

(61)

�(Ĵ i) = Ŝi − ih̄

(
qj

∂

∂qk
− qk

∂

∂qj

)
of a full quantization.

6. VCS inner products and Hilbert spaces

Let U denote a Hilbert space with orthonormal basis {ξν} for a finite-dimensional unitary irrep
M of a subgroupH ⊂ G.

We consider first the situation in which U can be identified with an H-invariant subspace of
the Hilbert space H for some unitary representation T by an embeddingE : U → H; ξν → |ν〉.
The corresponding H → U projection operator

� =
∑
ν

ξν〈ν| (62)

then satisfies the equation

M(h)� = �T (h) ∀h ∈ H. (63)

Thus,� is an H-interwining operator and defines a set of VCS wavefunctions

�(g) = �T (g)|�〉 =
∑
ν

ξν�ν(g) g ∈ G |�〉 ∈ H. (64)

Now, if U is contained in a subrepresentation of T which is a direct sum of discrete series
representations, the operator

I =
∫
G

∑
ν

T (g−1)|ν〉〈ν|T (g) dv(g) (65)

where dv is a left-invariant measure on G, is well-defined on H. Moreover it commutes with
the representation T (g) of any element g ∈ G. Thus, by Schur’s lemma, I acts as a multiple
of the identity on any irreducible subspace of H. Thus, an inner product is defined for the
VCS wavefunctions by

(�,� ′) = 〈�|I|� ′〉 =
∫
G

�∗(g) ·� ′(g) dv(g)

=
∫
G

∑
ν

�∗
ν (g)�

′
ν(g) dv(g). (66)

However, because �(hg) = M(h)�(g) for h ∈ H , the scalar product in U satisfies

�∗(hg) ·� ′(hg) = �∗(g) ·� ′(g) (67)

and the integral over G in equation (66) can be restricted to an integral over the coset space
H\G with respect to the left H-invariant measure inherited from G.

The above construction works when M is a subrepresentation of the restriction of T to
H ⊂ G. If M is not a subrepresentation but is contained in a direct integral decomposition
of the restriction of T to H, then it is still possible to define an H-intertwining operator by
equation (62) that satisfies equation (63) albeit with {〈ν|} defined as a set of functionals on a
dense subspace HD of H. It can then happen that the integral expression for I may not converge.
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However, the corresponding integral over H\G may converge and, if so, it defines an inner
product for VCS wavefunctions in parallel with Mackey’s construction of inner products for
induced representations. Inner products for more general VCS representations are constructed
by K-matrix methods [9].

The Hilbert space of all VCS wavefunctions that satisfy the constraint equation (38) and
are normalizable with respect to the above-defined inner product is that of the standard
representation of G induced from the representation M of the subgroup H ⊂ G. The
subspace of VCS wavefunctions that satisfy the stronger constraint condition (58) for a suitable
polarization is the Hilbert space for an irreducible induced representation.

7. Examples of VCS representations

The SU(3) and rigid rotor models provide insightful and representative examples of the VCS
quantization methods. Despite its apparent simplicity, the quantization of rotational models is
considerably more difficult than traditional canonical problems with three degrees of freedom.
The difficulties arise from the nontrivial geometry of the phase spaces and the possibility
of intrinsic degrees of freedom. However, the VCS quantization techniques handle these
problems with ease. In the following, algebraic formulations of both the SU(3) and rotor
models will be given, and the techniques of the previous sections will be used to investigate
their classical, semi-classical and quantal realizations with intrinsic degrees of freedom.

7.1. Coherent state representations of SU(3)

An su(3) model was first formulated as an algebraic model of nuclear rotations by Elliott
[10]. It was followed by the su(3) quark model of Gell-Mann and Ne’eman [11]. These
models have enjoyed enormous successes partly because of their simplicity; the su(3) algebra
is semi-simple and has a straightforward and well understood representation theory; it is also
compact and its unitary irreps are finite dimensional. VCS theory was applied to su(3) in [12]
and reviewed in [13, 14].

Let {Cij ; i, j = 1, 2, 3} be the standard basis for gl(3,C) � u(3)c with commutation
relations

[Cij , Ckl] = δjkCil − δilCkj . (68)

Then su(3) is the real linear span of the Hermitian combinations

Jij = −i(Cij − Cji) i < j

Qij = (Cij + Cji) i < j (69)

Hi = (Cii − Ci+1,i+1) 1 � i � 2.

Let T denote the regular representation of the group SU(3). It can be extended to a
representation of SL(3,C) on the algebraic direct sum of the irreps of SU(3), which is dense
in the regular representation. As usual we denote by A → Â = T (A) the corresponding
representation of the Lie algebra sl(3,C). The coherent state methods outlined lead to several
classes of su(3) representations corresponding to: classical representations, semi-classical
representations of a partial quantization, the induced representations of prequantization and
the irreducible unitary representations of a full quantization.

7.1.1. Classical representations. Scalar coherent state techniques lead to a classical
representation as follows. Let |0〉 be some state in the Hilbert space H of the representation T
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for which

〈0|Ĉij |0〉 = 0 i 
= j
(70)

〈0|Ĥ i|0〉 = νi .

By the standard moment map, a classical density ρ ∈ su(3)∗ is defined by

ρ(X) = 〈0|X̂|0〉 X ∈ su(3) (71)

and extended linearly to elements of su(3)c in the usual way by setting ρ(X + iY ) =
ρ(X) + iρ(Y ). A classical phase space is defined as the coadjoint orbit Oρ = {ρg; g ∈
SU(3)}, where

ρg(A) = ρ(A(g)) = 〈0|T (g)ÂT (g−1)|0〉 A ∈ su(3). (72)

This phase space is diffeomorphic to the factor space Hρ\SU(3), where Hρ is the isotropy
subgroup

Hρ = {h ∈ SU(3) | ρh = ρ}. (73)

We consider the generic situation, in which Hρ is the Cartan subgroup with Lie algebra
spanned by H1 and H2. (When ν1 or ν2 is zero, for example, Hρ is a larger subgroup and
the construction simplifies.) A classical representation of su(3) is then defined in which an
element A ∈ su(3)c maps to a function A on Hρ\SU(3) with values

A(g) = ρg(A) = ρ(A(g)). (74)

The Poisson bracket for this classical representation is defined in the standard way by

{A,B}(g) = ωg(A,B) = − i

h̄
ρg([A,B]) (75)

for A,B ∈ su(3).
The above representation can be obtained in explicit form in terms of suitable coordinate

charts for Hρ\SU(3) (see examples in [1]). For example, Murnaghan [15] has shown that an
SU(3) matrix can be parameterized by the factorization

g(ξ, α, β) = e−i(ξ1H1+ξ2H2)g23(α1, β1)g13(α2, β2)g12(α3, β3) (76)

where

g23(α, β) =
1 0 0

0 cosβ −e−iα sinβ
0 eiα sinβ cosβ

 (77)

and g13 and g12 are similarly defined. Since the first factor on the rhs of equation (76) is an
element of the isotropy subgroupHρ , this parameterization leads to a classical representation
of the su(3) algebra in terms of functions of the (α, β) coordinates.

Now observe that the first two factors on the rhs of equation (76) are elements of a
U(2) ⊂ SU(3) subgroup. This suggests a fibration of the classical phase space Hρ\SU(3)
as an intrinsicHρ\U(2) phase space over an extrinsic U(2)\SU(3) phase space. Because the
representation theory of U(2) is well known, this greatly facilitates the quantization process.

7.1.2. Semi-classical representations. The intrinsic symmetry algebra u(2) suggested by the
above parameterization of SU(3) is spanned by H1 and the elements of an su(2) algebra

Sz = 1
2H2 Sx = 1

2 (C23 + C32) Sy = − 1
2 i(C23 − C32). (78)

Thus, for the intrinsic degrees of freedom of the SU(3) classical phase space to be quantizable,
it is required that ν2 should be an integer. Moreover, in order that it should be an su(2) highest
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weight and uniquely define an su(2) irrep, it should be a positive integer. The representation
label ν1 is not so constrained. For, if it is not an integer, the only consequence is that the
associated representation of the u(1) algebra integrates to a unitary projective representation
of U(1), i.e. a unitary representations of a covering group of U(1). This is not possible for
su(2) because the group SU(2) is simply connected; it is its own universal covering group.

Let M denote a unitary (possibly projective) irrep of the U(2) intrinsic symmetry group
of highest weight (ν1, µ) (with µ a positive integer) on a Hilbert space U. Let E : U → H be
an embedding of U in the regular representation H and let � : H → U be the corresponding
orthogonal projection with respect to the inner product for H. The embedding E is required to
be such that

�ÂE = M(A) ∀A ∈ u(2) ⊂ su(3). (79)

Now define

ρ̂(A) = �ÂE A ∈ su(3) (80)

and assume, for convenience, that E is chosen such that

ρ̂(C12) = ρ̂(C13) = ρ̂(C21) = ρ̂(C31) = 0. (81)

Then

ρ̂
(
H1 + 1

2H2
) = ν1 + 1

2µ ρ̂(Si) = Ŝi (82)

where we draw attention to the fact
(
H1 + 1

2H2
)

commutes with the su(2) operators {Si} but
H1 on its own does not.

A partial quantization of su(3) is now defined as a semi-classical representation in which
an element A ∈ su(3) is mapped to a U(2)-equivariant operator-valued function Â on SU(3)
with values

Â(g) = ρ̂(A(g)). (83)

Note that, because

Â(hg) = M(h)Â(g)M(h−1) ∀h ∈ U(2) (84)

it is sufficient to evaluate the classical operator-valued functions and their Poisson brackets
on a set of U(2)\SU(3) coset representatives (cf section 3). Thus, making use of the
Murnaghan factorization of equation (76), a semi-classical representation is defined over
a set of U(2)\SU(3) coset representativesK = {k(α, β)} with

k(α, β) = g13(α2, β2)g12(α3, β3) (85)

for a suitable range of (α, β) values.
The expressions for this semi-classical representation as operator-valued functions of

(α, β) can be worked out. However, they are expressed more simply in terms of coset
representatives

K = {
eY(y) eZ(z)

}
(86)

for Hc\Gc for which Y (y) and Z(z) are linear combinations of commuting Lie algebra
elements, i.e.

Y (y) = y2C21 + y3C31 Z(z) = z2C12 + z3C13. (87)

From the identities

eY(y) eZ(z)C12 e−Z(z) e−Y(y) = C12 − y2H1 + y3C32 − y2
2C21 − y2y3C31

eY(y) eZ(z)C13 e−Z(z) e−Y(y) = C13 − y3(H1 +H2) + y2C23 − y2y3C21 − y2
3C31

(88)
eY(y) eZ(z)C23 e−Z(z) e−Y(y) = (1 + y2z2)C23 − y3z2(H1 +H2)

− y3(1 + y2z2)C21 + z2C13 − z2y
2
3C31
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it follows that the semi-classical representations of the elementsC12, C13 and C23 are given by

Ĉ12(y, z) = y3Ŝ− − y2
(
ν1 + 1

2µ
)
Î + y2Ŝz

Ĉ13(y, z) = y2Ŝ+ − y3
(
ν1 + 1

2µ
)
Î − y3Ŝz

Ĉ23(y, z) = (1 + y2z2)Ŝ+ − y3z2
(
ν1 + 1

2µ
)
Î − y3z2Ŝz

(89)

where Ŝ± = M(Sx ± iSy) and Î is the unit operator on U. The representations of all
elements of su(3) can be derived in this fashion. Calculating the semi-classical Poisson
bracket {Ĉ12, Ĉ23}(y, z) as defined by equation (24), we find that the quantal part is given by

[Ĉ12(y, z), Ĉ23(y, z)] = y2(1 + y2z2)Ŝ+ − y2
3z2Ŝ− − 2y3(1 + y2z2)Ŝz (90)

and the classical part by

ih̄	̂
(
XĈ12

,XĈ23

)
(y, z) = −y2

2z2Ŝ+ + y2
3z2Ŝ− − y3

(
ν1 + 1

2µ
)
Î + y3(1 + 2y2z2)Ŝz. (91)

Together, these components give

ih̄{Ĉ12, Ĉ23}(y, z) = [Ĉ12(y, z), Ĉ23(y, z)] + ih̄	̂
(
XĈ12

,XĈ23

)
(y, z)

= y2Ŝ+ − (
ν1 + 1

2µ
)
y3Î − y3Ŝz

= Ĉ13(y, z)

(92)

as required for a semi-classical representation. However, as we now show, the representations
of prequantization and their commutation relations are easier to derive, and those of the
irreducible representations of a full quantization are even simpler.

7.1.3. The induced representations of prequantization. To be quantizable, the irrep M of the
u(2) ⊂ su(3) subalgebra of a semi-classical representation should be a u(2) irrep contained
in some unitary representation T of su(3). This condition requires that ν1 also be a positive
integer. Thus, we now suppose that M is an irrep of u(2) on an intrinsic Hilbert space U with
highest weight (λ, µ), where λ and µ are both positive integers. This representation extends
to a representation of the U(2) group.

Let T be an abstract representation of SU(3) on a Hilbert space H and suppose the irrep
M of U(2) is contained in T. Then there exists a U(2)-intertwining operator � : H → U

satisfying

�T (h) = M(h)� ∀h ∈ U(2). (93)

For example, supposeV ⊂ H is an irreducibleU(2)-invariant subspace of H with orthonormal
basis {|sm〉;m = −s, . . . ,+s, s = µ/2} and the intertwining operator

� =
∑
m

ξsm〈sm| (94)

maps this basis to a corresponding basis {ξsm} for U.
The VCS wavefunctions are now defined over the coset representatives of equation (86);

�(y, z) = � eŶ (y) eẐ(z)|�〉 (95)

with Ŷ (y) = y2Ĉ21 + y3Ĉ31 and Ẑ(z) = z2Ĉ12 + z3Ĉ13. Thus, for example, the representation
�(C12) of the element C12 ∈ su(3)c is given immediately by

[�(C12)�](y, z) = � eŶ (y) eẐ(z)Ĉ12|�〉 = ∂

∂z2
�(y, z). (96)

The representations of other su(3)c elements are obtained almost as easily. For example, the
expression for one of the most complicated elements, defined by

[�(C21)�](y, z) = �eŶ (y)eẐ(z)Ĉ21|�〉 (97)



5640 S D Bartlett et al

is obtained from the identities

eẐ(z)Ĉ21 = (
Ĉ21 + z2(Ĉ11 − Ĉ22)− z3Ĉ23 − z2

2Ĉ12 − z2z3Ĉ13
)

eẐ(z)

eŶ (y)(Ĉ11 − Ĉ22) = (Ĉ11 − Ĉ22 + 2y2Ĉ21 + y3Ĉ31) eŶ (y)

eŶ (y)Ĉ23 = (Ĉ23 − y3Ĉ21) eŶ (y).

(98)

It follows that

�(C21) = (1 + y3z3)
∂

∂y2
− z2Ŝz − z3Ŝ

+ z2

((
λ + 1

2µ
)

+ 2y2
∂

∂y2
+ y3

∂

∂y3
− z2

∂

∂z2
− z3

∂

∂z3

)
. (99)

Similarly, one obtains

�(H1) = (
λ + 1

2µ
)

+ 2y2
∂

∂y2
+ y3

∂

∂y3
− 2z2

∂

∂z2
− z3

∂

∂z3
− Ŝz. (100)

It is readily checked that these operators satisfy the commutation relations

[�(C12), �(C21)] = �(H1)

[�(H1), �(C12)] = 2�(C12)

[�(H1), �(C21)] = −2�(C21).

(101)

7.1.4. The irreducible representations of a full quantization. For an induced VCS
representation of su(3) to be irreducible, the map � : H → U must be chosen such that it
intertwines a representation of a larger subgroupP ⊂ SU(3)c corresponding to a polarization.
Since an irrep of SU(3) is uniquely defined by its highest weight (λ, µ), it is also uniquely
defined by an irrep M̃ of the p ⊂ su(3)c subalgebra spanned by the elements {C23, C32,H1,H2}
of the u(2) subalgebra, considered for prequantization, together with the operators {C21, C31}.
The appropriate irrep is then one for which

M̃(A) = M(A) ∀A ∈ u(2) (102)

and

M̃(C21) = M̃(C31) = 0. (103)

Thus, we take for P the parabolic subgroup of SU(3)c generated by exponentiating the Lie
algebra p. The representation M̃ of p is likewise exponentiated to an irrep of P. Now if � is
an intertwining operator such that

�T (p) = M̃(p)� ∀p ∈ P (104)

then VCS states are defined by

�(z) = � eẐ|�〉 (105)

with Ẑ(z) = z2Ĉ12 + z3Ĉ13. It is immediately seen that such wavefunctions are the y-
independent subset of those of the prequantization of the previous section. Thus, one
immediately obtains the operators of an irrep with, for example,

�(C12) = ∂

∂z2

�(C21) = z2

((
λ + 1

2µ
)− z2

∂

∂z2
− z3

∂

∂z3

)
− z2Ŝz − z3Ŝ+

�(H1) = (
λ + 1

2µ
)− 2z2

∂

∂z2
− z3

∂

∂z3
− Ŝz.

(106)

This is a standard holomorphic induced representation.
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An inner product for this representation is defined such that the representation of the real
su(3) algebra is by Hermitian operators. This inner product leads to an explicit construction
of an orthonormal basis for an irrep [16].

7.1.5. The relationship between VCS and scalar coherent state representations. A VCS
representation can also be expressed as a scalar coherent state representation. However,
contrary to what one might expect, the latter is generally more complicated. Consider the
above example of a VCS representation of SU(3). An equivalent scalar coherent state
representation is given by realizing the vectors {ξsm} in a coherent state representation for
U(2) for which ξsm, with s = µ/2, becomes a real function of SO(2):

ξsm(θ) = 〈λµ|eiθ Ŝy |sm〉. (107)

A holomorphic VCS wavefunction is then expressed as a scalar coherent state function by
observing that

�(θ, z) =
∑
m

ξsm(θ)〈sm|eẐ(z)|�〉

= 〈λµ|eiθ Ŝy

(∑
m

|sm〉〈sm|
)

eẐ(z)|�〉

= 〈λµ|eiθ Ŝy eẐ(z)|�〉. (108)

The advantage of the VCS representation is that it subsumes all the properties of the
chosen subgroup, in this case U(2), and thereby avoids having to reproduce them in the
expression of the larger group, in this case SU(3). However, it is useful to know that a
VCS representation can always be expressed as a scalar coherent state representation because
it means that any results proved for a scalar CS representation automatically apply, with
appropriate interpretation, to a VCS representation.

7.2. Rigid rotor models

A classical rigid rotor is characterized by a rigid intrinsic structure. Thus, the dynamical
variables of a rigid rotor are its orientation and angular momentum. We consider here an
algebraic rotor model with an algebra of observables spanned by the components of the
angular momentum and the moments of the inertia tensor for the rotor.

The moments {Iij } of the inertia tensor (in a Cartesian basis) can be viewed as the elements
of a real symmetric 3 ×3 matrix. Given values for these observables, the orientation of a rotor
is defined (with some ambiguity) by the rotation 	 ∈ SO(3) that brings the inertia tensor to
diagonal form,

I ij = 	I	−1
ij = δij Ii (109)

where (I1, I2, I3) are fixed intrinsic moments of inertia.
Because the inertia tensor is a function only of orientation, its components commute

[Iij , Ikl] = 0 (110)

and span an algebra isomorphic to R6. The angular momentum L has Cartesian components
{Li; i = 1, 2, 3} which span an so(3) Lie algebra,

[Li, Lj ] = ih̄Lk i, j, k cyclic. (111)
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The inertia tensor is defined, by (109), to be a rank-2 Cartesian tensor. Thus, it obeys the
commutation relations

[Iij , Lk] = ih̄
∑
l

(εlikIlj + εljkIli ). (112)

Together, the moments of inertia and the angular momenta span an SGA for the rotor that
is isomorphic to the semidirect sum algebra [R6]so(3) with R6 as its ideal. This algebra is
known as the rotor model algebra (RMA).

The corresponding dynamical group obtained by exponentiating the RMA is the rotor
model group (RMG), a group isomorphic to the semidirect product [R6]SO(3). An element
of the RMG is a pair (Q,	), with Q ∈ R6 and 	 ∈ SO(3) and the group product is given by

(Q1,	1) ◦ (Q2,	2) = (
Q1 +	1Q2	

−1
1 ,	1	2

)
. (113)

This group and its Lie algebra have many classical and quantal representations. The
classical representations of rigid rotor models and Euler’s equations for their Hamiltonian
dynamics are well known. The quantization of the rigid rotor was given by Casimir [17]
and is well known in nuclear [18] and molecular physics (cf [19] for a review). The
route from classical representations of the rotor to the unitary representations of quantum
mechanics is an illuminating example for both the methods of induced representations and
of geometric quantization. We show here that the classical and quantal representations have
simple expressions in coherent state and VCS theory.

7.2.1. Classical representations. A classical representation of a rigid rotor can be derived
from any abstract unitary representation T of the RMA [R6]so(3) on a Hilbert space H. Let
Â = T (A) for A ∈ [R6]so(3). Let |0〉 be a normalized state in H and ρ0 a corresponding
density satisfying

ρ0(Li) = 〈0|L̂i|0〉 = 0 ρ0(Iij ) = 〈0|Î ij |0〉 = �ij = δij�i (114)

with i, j = 1, 2, 3 and �i ∈ R. Then ρ0 is the element of the dual RMA∗ that represents a
classical state with zero angular momentum and orientation such that the inertia tensor � is
diagonal, i.e. the principal axes of this inertia tensor coincide with those of the space-fixed
coordinate frame. As usual, many classical irreps (in this case with different principal moments
of inertia {�i}) can be derived from a given unitary representation T by different choices of ρ0.

Starting with a density ρ0, a classical phase space for the rotor is the coadjoint orbit

Oρ = {
ρ(Q,	); (Q,	) ∈ [R6]SO(3)

}
(115)

of the RMG in RMA∗, where ρ(Q,	) is defined by

ρ(Q,	)(Li) = 〈0|T (Q,	)L̂iT ((Q,	)−1)|0〉
ρ(Q,	)(Iij ) = 〈0|T (Q,	)Î ijT ((Q,	)−1)|0〉. (116)

The set of functions {�ij ,Li; i, j = 1, 2, 3}, defined by

�ij (Q,	) = ρ(Q,	)(Iij ) =
∑
k

�k	ki	kj

Ll(Q,	) = ρ(Q,	)(Ll) = −h̄
∑
ijk

εijkQij (�i − �j )	kl
(117)
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are then a basis for a classical representation of the RMA with Poisson brackets

{�ij ,�kl}(Q,	) = − i

h̄
ρ(Q,	)([Iij , Ikl]) = 0

{Li ,Lj }(Q,	) = − i

h̄
ρ(Q,	)([Li, Lj ]) =

∑
k

εijkLk(Q,	)

{�ij ,Lk}(Q,	) = − i

h̄
ρ(Q,	)([Iij , Lk]) =

∑
l

(εlik�lj (Q,	) + εljk�li (Q,	)).

(118)

If the three principal moments of inertia {�1,�2,�3}, are all different, then the subgroup
of rotations that leave the density ρ0 invariant under the coadjoint action is the discrete
group D2 generated by rotations through angle π about the principal axes and the isotropy
subgroup of the phase space is the semidirect product [R3]D2, where R3 ⊂ R6 is
the subgroup generated by the diagonal moments {Iii , i = 1, 2, 3}. The phase space
O0 � [R3]D2\[R6]SO(3) is then symplectomorphic to the cotangent bundle T ∗(D2\SO(3)).
This orbit is the phase space of an asymmetric top. If two of the principal moments of inertia
are equal, e.g., �1 = �2 
= �3, then the subgroup of rotations that leave ρ0 invariant is
D∞, a group comprising rotations about the symmetry axis and rotations through angle π
about perpendicular axes. The isotropy subgroup of the phase space is then [R4]D∞,
where R4 ⊂ R6 is the subgroup generated by {Iii , i = 1, 2, 3} and I12. The phase space
O0 � [R4]D∞\[R6]SO(3) is then symplectomorphic to the cotangent bundleT ∗(D∞\SO(3))
which is the phase space of a symmetric top.

The phase space for a symmetric top is of lower dimension than that of an asymmetric
top. One of the reasons for this difference is that there is no element of the RMA that can
generate a boost in the component of the angular momentum about a symmetry axis. Thus,
when �1 = �2, the component of the angular momentum along the 3-axis is a constant of the
motion with value given by that at ρ0. This condition does not mean that a symmetric top
cannot rotate about its symmetry axis. It means only that it rotates about its symmetry axis
with a constant angular momentum. Thus, the component of angular momentum along the
symmetry axis of a symmetric top is appropriately regarded as an intrinsic (gauge) degree of
freedom.

Consider, for example, a symmetric top representation for which �1 = �2 
= �3 and,
instead of |0〉, consider a normalized state |K〉 and corresponding density ρ(K)0 for which

ρ
(K)
0 (Li) = 〈K|L̂i |K〉 = 0 i = 1, 2

ρ
(K)

0 (L3) = 〈K|L̂3|K〉 = K

ρ
(K)

0 (Iij ) = 〈K|Î ij |K〉 = δij�i
(119)

where K is a real constant. The density ρ(K)0 ∈ RMA∗ is that of a symmetric top with its axis
of symmetry aligned along the 3-axis and with angular momentum K about this axis. Let OK

be the coadjoint orbit containing ρ(K)0 . When K 
= 0, the density ρ(K)0 is no longer invariant
under rotations through π about an axis perpendicular to the symmetry axis and OK becomes
symplectomorphic to T ∗(SO(2)\SO(3)); as a manifold, OK remains four dimensional.

7.2.2. The classical dynamics of a symmetric top. The classical dynamics of a symmetric
top illustrate the advantages of working algebraically with observables rather than coordinates
and of considering the component of angular momentum K about the symmetry axis as a
gauge degree of freedom.
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Suppose the classical Hamiltonian for a symmetric top is given by the standard function

H = 1

2

∑
mn

Lm�−1
mnLn. (120)

Because H is rotationally invariant, the square of the angular momentum L2 is a constant of
the motion. And, for a symmetric top, the component K of the angular momentum along the
symmetry axis is also a constant of the motion. Thus, in the principal axes frame of the rotor,
the Hamiltonian becomes

H = 1

2�1

(L2
1 + L2

2

)
+

1

2�3
K2 = 1

2�1
L2 + constant (121)

where

L2 = L2
1 + L2

2 + L2
3. (122)

Although derived in the principal axes frame, these expressions of H and L2 are valid in any
reference frame, albeit with �1 and K regarded as numerical constants.

Now, because the phase space of a symmetric top is of dimension four, the motion of
the rotor is characterized by the time evolution of any four linearly-independent observables,
e.g., the components {L1,L2,�13,�23} of L and � relative to the space-fixed axes. The time
evolution of these observables is then given by solution of the equations of motion

�̇i3 = 1

2�1

{�i3,L2
} L̇i = 1

2�1

{Li ,L2
} = 0 i = 1, 2. (123)

As expected, these equations confirm that each component of the angular momentum is
conserved.

Suppose that the angular momentum has magnitude L and is aligned along the space-fixed
3-axis. Then the time evolution of the top is given by

�̇13 = − L

�1
�23 �̇23 = L

�1
�13. (124)

These are the equations of a simple two-dimensional harmonic oscillator of frequency L/�1.
Thus, the top precesses about the 3-axis with this angular frequency. Note, however, that if
the angular momentum lies along the symmetry axes of the symmetric top, then the symmetry
axis coincides with the space-fixed 3-axis. And, since the symmetry axis is a principal axis of
the inertia tensor, it then follows that �12 = �13 = 0 and the top simply spins in the expected
way, without precession, with angular momentumK = L about its symmetry axis.

7.2.3. Semi-classical representations of the symmetric top. The intrinsic degrees of freedom
of a symmetric top are quantized in a semi-classical representation by replacing the classical
phase space [R4]D∞\[R6]SO(3) � T ∗(D∞\SO(3)) by a fibre bundle associated with the
principal [R6]SO(3) → [R4]D∞\[R6]SO(3) bundle by a unitary irrep M of the isotropy
subgroup [R4]D∞. Such semi-classical representations can be derived from an abstract
unitary representation T of the RMG on a Hilbert space H as follows.

Let |ξK〉 = |K〉 ∈ H be a normalized state that satisfies equation (119) with �1 = �2 
= �3,
and let |ξK̄〉 be defined by

|ξK̄〉 = |K̄〉 = T
(

e
i
h̄
πL2

)
|K〉. (125)

Let

E = |K〉〈ξK | + |K̄〉〈ξK̄ | (126)
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be the natural embedding of the subspace U, spanned by the states {|ξK〉, |ξK̄ 〉}, in H, and let

� = |ξK〉〈K| + |ξK̄ 〉〈K̄ | (127)

be the corresponding H → U projection operator. Together, E and � define a semi-classical
density ρ̂(K)(A) = �T (A)E that (forK 
= 1/2) satisfies

ρ̂(K)(Li) = 0 i = 1, 2

ρ̂(K)(L3) = K (|ξK〉〈ξK | − |ξK̄ 〉〈ξK̄ |) ≡ Ŝ
ρ̂(K)(Iij ) = δij�i (|ξK〉〈ξK | + |ξK̄〉〈ξK̄ |) = δij�i Î

(128)

with Î the identity operator on U.
The subalgebra h of the RMA, g = [R6]so(3), defined by

h = {A ∈ g|ρ̂([A,B]) = [ρ̂(A), ρ̂(B)],∀B ∈ g} (129)

is the Lie algebra [R4]so(2). Moreover, the restriction of ρ̂ to h ⊂ g is a reducible
representation M for which

M(L3)|ξK〉 = K|ξK〉 M(L3)|ξK̄ 〉 = −K|ξK̄〉
M(Iii)|ξK〉 = �i|ξK〉 M(Iii )|ξK̄〉 = �i |ξK̄〉 i = 1, 2, 3 (130)

M(I12)|ξK 〉 = M(I12)|ξK̄ 〉 = 0.

Note that, unless U ⊂ H happens to be an h-invariant subspace, this representation of h is
not a subrepresentation of the restriction of T to h ⊂ g. It is an example of an embedded
representation, as discussed in section 3. Nevertheless, it integrates to a reducible (and
generally projective) unitary irrep M of [R4]SO(2) which extends to an irreducible unitary
irrep of [R4]D∞ with, for example,

M
(
e− i

h̄
θL3
)|ξK〉 = e−iKθ |ξK〉 M

(
e− i

h̄
θL3
)|ξK̄〉 = eiKθ |ξK̄ 〉

M
(
e− i

h̄
πL2
)|ξK〉 = (−1)2K |ξK̄ 〉 M

(
e− i

h̄
πL2
)|ξK̄ 〉 = |ξK〉.

(131)

The operator ρ̂ also defines a semi-classical representation of any elementA in the RMA
by an operator-valued function Â over the RMG with values

Â(g) = ρ̂(A(g)) g ∈ [R6]SO(3) (132)

where A(g) = Adg(A). These functions satisfy the [R4]D∞-equivariance condition

ρ̂hg = M(h)ρ̂gM(h
−1) ∀h ∈ [R4]D∞ (133)

and have Poisson brackets

{Â, B̂}(g) = − i

h̄
ρ̂([A(g), B(g)]) ∀g ∈ [R6]SO(3). (134)

7.2.4. Quantization of a symmetric top. There is a natural polarization for any cotangent
bundle and, as a result, the full quantization of a rotor is simpler than prequantization. We
therefore bypass prequantization and proceed directly to quantization by constructing an
appropriate unitary irrep of the RMG. The natural polarization for the symmetric top is defined
by starting with a representation M of the isotropy subgroup [R4]D∞ for the phase space of
a symmetric top and extending it to a representation M̃ of [R6]D∞. Such a representation is
defined as

M̃(Q,ω) = e− i
h̄
Q·�M(ω) Q ∈ R

6 ω ∈ D∞, (135)

where � is the diagonal matrix whose entries are the principal moments of inertia (�1,�2,�3)

of the rotor, and Q · � = ∑
ij Qij�ij = ∑

i Qii�i .
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Note, however, that for the semi-classical representation defined by M to be quantizable,
it is necessary that 2K should be an integer. Otherwise the representation of SO(2) labelled
by K will not be contained in any representation of SO(3). If 2K is odd, then M is contained
in a projective (spinor) representation of SO(3), i.e. a true representation of SU(2), the double
cover of SO(3). Thus, to avoid the subtleties associated with projective representations, it
will be convenient in the following to regard M̃ as a true irrep of [R4]Dd

∞, the double cover of
[R4]D∞, and require that it be contained in some unitary representation of [R4]SU(2).

Let U be the carrier space for the irrep M̃ of [R6]Dd
∞. Now, we no longer require U to

be a subspace of the Hilbert space H for the abstract representation T of the RMG. Instead,
an irrep of the RMG is induced in VCS theory by defining an [R6]Dd

∞-intertwining operator
� : HD → U from a suitably defined dense subspace HD ⊂ H to U, such that

�T (Q,ω) = e− i
h̄
Q·�M(ω)� Q ∈ R

6 ω ∈ Dd
∞. (136)

VCS wavefunctions are then defined initially as vector-valued functions over [R6]SU(2) with
values in U given by

�(Q,	) = �T (Q,	)|�〉 |�〉 ∈ HD. (137)

Because of the constraint condition (136), these functions satisfy

�(Q,	) = e− i
h̄
Q·��R(	)|�〉 Q ∈ R

6 	 ∈ SU(2) (138)

whereR(	) = T (0,	) is the restriction of the representation T to SU(2). Thus, it is sufficient
to define VCS wavefunctions as the vector-valued functions over SU(2)

ψ(	) = �R(	)|�〉 |�〉 ∈ HD 	 ∈ SU(2) (139)

which satisfy the condition

ψ(ω	) = M(ω)ψ(	) ∀ω ∈ Dd
∞. (140)

The VCS representation of the RMG is now defined on these wavefunctions by

[�(Q,	)ψ](	′) = �R(	′)T (Q,	)|�〉 = �T (	′Q	̃′,	′	)|�〉 (141)

which gives

[�(Q,	)ψ](	′) = e− i
h̄
(	′Q	̃′)·��(	′	). (142)

An explicit construction of the Hilbert space for this VCS representation is presented as
follows. First observe from equation (142) that a reducible representation T of the RMG is
defined on the Hilbert space H = L2(SU(2)) by

[T (Q,	)ψ](	′) = e− i
h̄
(	′Q	̃′)·��(	′	). (143)

Now, by the Peter–Weyl theorem, an orthonormal basis for L2(SU(2)) is given by the SU(2)
Wigner functions

�NJM =
√

2J + 1

8π2
DJ
NM (144)

where 2J is a positive or zero integer and M and N run from −J to +J in integer steps.
Let {|NJM〉} denote the vector in H with wavefunction �NJM and let HD denote the dense
subspace of finite linear combinations of these basis vectors. Now let 〈K| and 〈K̄| denote the
functionals on HD for which

〈K|NJM〉 =
√

2J + 1

8π2
δNKδMK 〈K̄|NJM〉 = (−1)J+K

√
2J + 1

8π2
δNKδM,−K. (145)
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Let � denote the operator

� = 1√
2
(ξK 〈K| + ξK̄ 〈K̄|) (146)

that maps HD → U , where {ξK, ξK̄ } is the basis for U as defined above with 2K a fixed
positive integer. This operator satisfies the intertwining condition

�R(ω) = M(ω)� ∀ω ∈ Dd
∞ (147)

and defines a basis {ψKJM} for a Hilbert space HK of coherent state wavefunctions, having
values

ψKJM(	) = �R(	)|KJM〉 =
√

2J + 1

16π2

[
ξKDJ

KM(	) + (−1)J+KξK̄DJ
−K,M(	)

]
. (148)

This basis is seen to be orthonormal relative to the natural U ⊗ L2(SU(2)) inner product. It
is the standard basis of rotor model wavefunctions used in nuclear physics [18, 20, 21].

The map H → HK , defined by equation (148), shows that HK is isomorphic to a subspace
of H. From the theory of induced representations, it is known that this subspace is irreducible.
Thus, the irrep M̃ of the subgroup [R6]D6

∞ uniquely defines an irreducible representation of
the RMG and its Lie algebra RMA and, hence, a quantization of the symmetric top model.

8. Concluding remarks

Coherent state representation theory has its most general expression in vector coherent
state (VCS) theory. This theory is now highly developed as a practical theory of induced
representations. It encompasses virtually all the standard inducing constructions. In addition,
it facilitates the construction of orthonormal bases for irreducible representations and provides
practical algorithms for the computation of the matrix coefficients for the irreps of model
spectrum generating algebras. By having the flexibility to induce irreps of a group G from
a multidimensional irrep of a subgroup H ⊂ G, VCS theory has a huge practical advantage
over its scalar counterpart. It has been used to construct irreps of representative examples
of all the classical Lie algebras and has been applied widely to models in nuclear physics
(cf [7, 13]).

The relationship of geometric quantization to the theory of induced representations
is surely well understood by experts in the two fields. However, the new insights and
simplifications that can be brought to the practical application of both theories by VCS theory
is not known. We hope to have shown in this paper that, by understanding the relationships
between the three theories when they are expressed in a common language, it becomes possible
to exploit their complementary features to greatest advantage.

Already some new perspectives and new approaches to old physical problems are
suggested by the unified approach to quantization presented here. An important advance
in modern physics has been the development of Abelian and non-Abelian gauge theory. It
has long been known that (often hidden) intrinsic motions can have a profound effect on the
dynamics of a system. A well-known example of this is the precessional motion of a symmetric
top that is spinning in a way that may not be directly observable about its symmetry axis.

The VCS methods outlined in this paper suggest ways to select physically and
mathematically relevant intrinsic degrees of freedom and express their influence on the
complementary extrinsic dynamics in terms of gauge potentials. For example, it might
be appropriate to regard the fast and slow degrees of freedom of a many-body system, for
which the Born–Oppenheimer approximation [22] applies, as being intrinsic and collective,
respectively. A model description of the scattering of two nuclei for which the motions of their
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centres of mass are adiabatic in comparison to their intrinsic degrees of freedom would be a
candidate for such a separation. Quantum optics also provides examples, such as parametric
down conversion (PDC), that possess useful algebraic models [23]; in the standard description
of PDC, strong coherent beams are treated classically while down-converted photon pairs
must be described quantally. In physical systems where some degrees of freedom tend to
behave in a manifestly quantal way while others are essentially classical, the proposals given
in section 3 for deriving partial quantizations have the potential for providing systematic ways
of modelling such systems. In particular, methods are given for constructing semi-classical
models in which the intrinsic (gauge) degrees of freedom are quantized but the extrinsic
dynamics are treated classically. Such models provide a valuable framework for interpreting
the widespread phenomena of collective subdynamics observed in systems whose collective
motions are adiabatic but whose intrinsic excitations, when treated quantally, lie at relatively
high energies.

A problem of considerable interest is the description of vortices in quantum fluids. This
problem has been related to the notoriously difficult task of constructing the unitary irreps of
infinite-dimensional groups of diffeomorphisms [24]. The potential relevance of the methods
proposed in this paper to this problem are indicated by the following observations. A model
of linear hydrodynamic flows in nuclei (the so-called CM(3) model) has been quantized both
by induced representation methods [25] and geometric quantization [26]. These quantizations
are characterized by quantized vortex spins which are naturally regarded as intrinsic SU(2)
degrees of freedom. The second observation is that VCS methods have been successfully
applied to the infinite-dimensional affine Lie algebra ŝl(2) [27].
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Appendix. The covariant derivative and curvature tensor

Claim. Let B be a vector bundle with typical fibre U associated with a principal G → H\G
bundle by a unitary representation M of H ⊂ G. Let ρ̂ be an H-equivariant g → GL(U)

map having the property that it maps the subalgebra h ⊂ g to the representation M, i.e.
ρ̂(A) = M(A) for A ∈ h (cf text for details). Define

ih̄[∇A�](g) = �(A(g)g)− ρ̂(A(g))�(g) (A.1)

whereA(g) = Adg(A),�(Ag) is defined for anyA ∈ g by equation (43), and� is any section
of B, i.e. it satisfies the identity

�(hg) = M(h)�(g) ∀h ∈ H. (A.2)

Then ∇A is identical to

∇XÂ = XÂ +
i

h̄
θ̂ (XÂ) (A.3)

the covariant derivative in the direction of the Hamiltonian vector field XÂ over H\G
generated by the vector-valued function Â(g) = ρ̂(A(g)), where θ̂ is a symplectic connection
(one-form) for B.

Proof. A choice of gauge is defined by the expansion

A(g) =
∑
i

Ai(g)Ai +
∑
ν

Aν(g)Aν (A.4)
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where {Ai} is a basis for h and {Aν} completes a basis for g. Using the identity �(Aig) =
ρ̂(Ai)�(g), definition (A.1) gives

ih̄[∇A�](g) =
∑
ν

Aν(g)(�(Aνg)− ρ̂(Aν)�(g)). (A.5)

Now, if g(x) = eX(x)g, with X(x) = − i
h̄

∑
µ x

µAµ, then as shown in the appendix to [1],

ih̄
∂

∂xν
�(g(x)) = �(Aν(x)g(x)) (A.6)

where

Aν(x) = −ih̄ eX(x)
∂

∂xν
e−X(x) = Aν +

1

2!
[X(x),Aν] +

1

3!
[X(x), [X(x),Aν]] + · · · . (A.7)

Therefore, if Aν(x) is expanded

Aν(x) =
∑
µ

�µ
ν (x)Aµ +

∑
i

λiν (x)Ai (A.8)

then

�(Aνg(x)) = ih̄
∑
µ

�̄µ
ν (x)

(
∂

∂xµ
+

i

h̄
λiµ(x)ρ̂(Ai)

)
�(g(x)) (A.9)

where �̄ is the inverse of the matrix �. It follows from equation (A.5) that

[∇A�](g(x)) =
∑
ν

Aν(g(x))�̄µ
ν (x)

(
∂

∂xµ
+

i

h̄
θ̂µ(x)

)
�(g(x)) (A.10)

where

θ̂µ(x) =
∑
ν

�ν
µ(x)ρ̂(Aν) +

∑
i

λiµ(x)ρ̂(Ai) = ρ̂(Aµ(x)). (A.11)

Thus, if we regard θ̂µ(x) as the component θ̂ g(x)(∂/∂xµ) of a one-form θ̂ , defined at g(x) by

θ̂ g(x) =
∑
µ

θ̂µ(x) dxµ (A.12)

and define the Hamiltonian vector field XÂ by

[XÂ�](g(x)) =
∑
ν

Aν(g)�̄µ
ν (x)

∂

∂xµ
�(g(x)) (A.13)

then

∇A = XÂ +
i

h̄
θ̂ (XÂ) (A.14)

as claimed.
To check that θ̂ is a symplectic connection, we now derive the curvature of the connection

one-form θ̂ . Consider first the standard exterior derivative of θ̂ given by

dθ̂ g(x) =
∑
µν

∂θ̂ν(x)

∂xµ
dxµ ∧ dxν. (A.15)

From definition (A.11) of θ̂ ν(x), and with Aν(x) expressed by equation (A.7),

∂θ̂ν(x)

∂xµ
= −ih̄

∂

∂xµ
ρ̂

(
eX(x)

∂

∂xν
e−X(x)

)
. (A.16)
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Then, with the help of the identities (see [1])

ih̄
∂ eX(x)

∂xν
= Aν(x) eX(x) = eX(x)Aν(−x) (A.17)

ih̄
∂ e−X(x)

∂xν
= −Aν(−x) e−X(x) = −e−X(x)Aν(x) (A.18)

we obtain

dθ̂ g(x)

(
∂

∂xµ
,
∂

∂xµ

)
= ∂θ̂ν(x)

∂xµ
= − i

h̄
ρ̂([Aµ(x),Aν(x)]). (A.19)

Thus, from the expansion of Aν(x) given by equation (A.8), and recalling that

ρ̂([A,B]) = [ρ̂(A), ρ̂(B)] A ∈ h B ∈ g (A.20)

we derive

dθ̂ g(x)

(
∂

∂xµ
,
∂

∂xµ

)
=
∑
µ′ν′

�µ′
µ (x)	̂µ′ν′�ν′

ν (x) + [θ̂µ(x), θ̂ν(x)]. (A.21)

with

	̂µν = − i

h̄
(ρ̂([Aµ,Aν])− [ρ̂(Aµ), ρ̂(Aν)]). (A.22)

It follows that, for the vector fields defined by equation (A.13),

dθ̂ g(x)(XÂ,XB̂) =
∑
µν

Aµ(g(x))	̂µνB
ν(g(x)) +

[
θ̂ g(x)(XÂ), θ̂ g(x)(XB̂)

]
. (A.23)

Hence we derive the general expression for the curvature tensor

	̂(XÂ,XB̂) = dθ̂ (XÂ,XB̂)− [θ̂ (XÂ), θ̂ (XB̂)]. (A.24)

�
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